Турбулентность в пограничном слое за плоской ударной волной

ШИЛИНЬ 404 ГРУППА

НАУЧНЫЙ РУКОВОДИТЕЛЬ доцент И.В. МУРСЕНКОВА

Актуальность исследования

Большинство течений жидкостей, газов и плазмы в природе, на обтекаемой поверхности и в технических устройствах является турбулентными. В настоящее время активно продолжаются экспериментальные, теоретические и численные исследования турбулентности.

Турбулентность - явление, наблюдаемое во многих течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри различных размеров, вследствие чего их гидродинамические и термодинамические характеристики испытывают хаотические флуктуации и потому изменяются от точки к точке и во времени нерегулярно.

Сверхзвуковой самолет МИГ-21. http://www.turplace.ru/stati-2-2/pochemu-grazhdanskie-samolety-ne-letayut-na-sverkhzvukovykh-skor

Сравнение Fluent и NTS

Расчет крылового профиля NACA4412

Re=1.5.10⁶. AoA=13.87°

NACA 4412

- > FLUENT: двухстадийный SST RANS alg. WMLES расчет
- NTS: одностадийный SST RANS SST IDDES расчет
- В обоих случаях переход осуществлялся при х/с=0.2

Гарбарук А.В. Курс лекций «Современные методы расчета турбулентных течений» (http://cfd.spbstu.ru/agarbaruk/lecture/modern_methods)

Число Рейнольдса

Цель работы

Анализ структурных элементов пограничного слоя сверхзвукового потока за фронтом плоской ударной волны на основе обработки фотоизображений свечения импульсного поверхностного скользящего разряда

Экспериментальная установка

Изображения свечения разряда

Схема течения в канале ударной трубы [5]: 1 – фронт ударной волны, 2 – контактная поверхность, 3 – область поверхностного разряда, 4 – стекла, 5 – электроды разряда. Стрелкой показано направление потока.

[И.А. Знаменская, Д.Ф. Латфуллин, И.В. Мурсенкова. Ламинарно-турбулентный переход в сверхзвуковом пограничном слое при инициировании импульсного поверхностного разряда. Письма в ЖТФ, 34 (15), 2008.]

Фотографии свечения разряда в разрядной камере в неподвижном воздухе (а), в сверхзвуковых потоках в ламинарном (б) и турбулентном (в) пограничном слое. Стрелкой показано направление потока.

Mursenkova I.V., Znamenskaya I.A. and Lutsky A.E. Influence of shock waves from plasma actuators on transonic and supersonic airflow. J. Phys. D: Appl. Phys., 2018. Vol. 51, No 5. 105201.

Экспериментальные условия

	M_0	M_{π}	р ₁ (торр)	ρ ₁ (кг/м ³)	ρ ₂ (кг/м ³)	Re (·10 ⁵)	ΔХ, см
1	2,38-2,44	1.17	33	0.056	0.18	2,4	3-28
2	3,6-3,72	1.52	15	0.025	0.11	2,6	6-22
3	4,17-4,48	1.59	7.6	0.013	0.06	1,6	26-29

Результат сканирования интенсивности свечения разряда по направлению потока.

Обработка экспериментальных изображений

оригинальное изображение свечения разряда

модифицированное изображение

Спектр Фурье интенсивности свечения

1 серия экспериментов

Гистограмма распределения частот (обратного линейного размера) при ∆X = 12 см (а) и 14 см (б). Синим цветом показаны результаты сканирования по направлению потока, коричневым – в перпендикулярном потоку направлении.

Выводы

- Проанализированы фотоизображения свечения импульсного скользящего поверхностного разряда в сверхзвуковых потоках в ударной трубе. Использован математический инструмент Фурье- преобразования интенсивности свечения для анализа турбулентной структуры пограничного слоя.
- Масштабы турбулентных структур в пограничном слое, определенные путем сканирования интенсивности свечения разряда и Фурье- преобразования сигнала, достигают 5 мм при числах Маха потока 1.17-1.59.
- Характер турбулентных структур в пограничном слое при разных экспериментальных условиях имеет общие черты, отражающие динамику развития турбулентности.

Литература

[1] Курбацкий А.Ф. Лекции по турбулентности. 2000.

[2] Носов М. А. Лекции по теории турбулентности. Москва, 2013.

[3] Xin Z., Yong H., Xunnian W., et al. Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000. Chinese Journal of Aeronautics, 2016.

[4] Mursenkova I.V., Znamenskaya I.A. and Lutsky A.E. Influence of shock waves from plasma actuators on transonic and supersonic airflow. J. Phys. D: Appl. Phys., 2018. Vol. 51, No 5. 105201.

[5] И.А. Знаменская, Д.Ф. Латфуллин, И.В. Мурсенкова. Ламинарно-турбулентный переход в сверхзвуковом пограничном слое при инициировании импульсного поверхностного разряда. Письма в ЖТФ, 34(15):75–80, 2008.

[6] Мурсенкова И.В., Сысоев Н.Н., Уваров А.В. Основы физической гидродинамики: уравнения, граничные условия, простейшие примеры. М., МГУ, 2015. 132 с.

[7] Шлихтинг Г. Теория пограничного слоя. – М., 1974. 712 с.

СПАСИБО за внимание!